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1

Derivation of a rate equation

Enzymes do not make reactions take place, they stimulate the rate at which
reactions do take place. Any chemical reaction which proceeds in the
presence of an enzyme will also proceed in the absence of the enzyme but at
a much slower rate. Enzymes catalyze the rate of chemical reactions by
lowering the activation energy of the reaction, and they do this in a manner
which is highly specific for the reactants of the reaction. It was realized very
early in the study of enzyme action that meaningful studies of enzyme
action would, of necessity, involve the study of the kinetic behavior of the
chemical reaction in the presence of the appropriate enzyme. It is still true
that if one understands the kinetic behavior of the enzyme-catalyzed
reaction, one also understands much about the mechanism of the enzymic
reaction. This requires the investigation of the kinetic behavior of the
enzymic reaction under conditions which are defined meticulously. Within
the framework of this text, this will imply under steady state conditions.
Steady state, as it applies to enzyme kinetics will be defined in this chapter
and in chapter 2.

1.1 The role of ‘diastase’ in the early development of a theory

The enzyme-catalyzed hydrolysis of sucrose played an important role in the
early development of a suitable equation to explain the kinetic behavior of
enzyme-catalyzed reactions. One reason for the importance of this reaction
was that the enzyme invertase was available in a reasonably pure form by
the end of the nineteenth century when the principles of enzyme kinetics
were established. In some of the early literature, this enzyme was called
diastase. In fact, in some of the early literature all enzymes were called
diastase. A second reason for the importance of sucrose hydrolysis in the
development of enzyme kinetics was that the characteristics of acid-
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catalyzed hydrolysis of sucrose had been well established by the latter part
of the nineteenth century, and this allowed comparison of the acid-
catalyzed hydrolysis with the enzyme-catalyzed reaction.

The hydrolysis of sucrose is the following reaction

kl
sucrose + H,O = glucose + fructose

In the foregoing expression, k, and k _, are second order rate constants, i.e.
the rate of the reaction is proportional to the concentration of two
reactants. If the reaction were carried out in an aqueous solution where the
concentration of water would be approximately 55 M and if the concentra-
tion of sucrose were 1 M or less, the concentration of water would not
change appreciably during the course of the reaction. Since the concentra-
tion of water would not change significantly even if the reaction continued
to completion, one can assume k; = k,(H,0), where k| is a pseudo-first
order rate constant, the rate is proportional to the concentration of one
reactant. The differential equation for the disappearance of sucrose with
respect to time is

4B -k, P)Q (L.1)

dt
where A = sucrose, P = glucose and Q = fructose. Throughout this book it
will be assumed that the activity coefficient of any reactant is unity, thus the
terms concentration and activity will be assumed to be interchangeable. If
the concentration of either product were equal to zero or if k_, were equal
to zero, the second term on the right-hand side of eq. (1.1) would be equal to
zero, and eq. 1.1 would become
d(A)
———=kj(A 12
T AV (12
Equation (1.2) describes a reaction which would exhibit first order kinetic
behavior. A plot of the rate of disappearance of A against the concentration
of A should be a straight line which should pass through the origin with
a slope equal to k. This is shown in Figure 1.1.
Equation (1.2) can be rearranged and expressed in integral form.

“d(A) f
—=—kI{ d 1.3
Lo TV A (13)

The result of the integration gives,

In(A)= —kjt+1InA, (1.4)
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_da)
dt

(A)

Fig. 1.1. Plot of the rate of disappearance of substrate A as a function of the
concentration of A for a first order reaction.

where A, is the initial concentration of A.
(A)y=A e (1.5)
Substitution of eq. (1.5) into eq. (1.2) gives,

d(A ,
——((jt)=k;Aoe"‘" (1.6)
Plotting the rate of disappearance of A against time gives an exponential
curve as is shown in Figure 1.2,

Investigations of the acid-catalyzed hydrolysis of sucrose were consistent
with the hypothesis that the reaction followed first order kinetics. However,

d(A)
dt

time

Fig. 1.2. Plot of the rate of disappearance of substrate A as a function of time for
a first order reaction.
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d(A)
S dt

(A)

Fig. 1.3. Plot of the rate of disappearance of substrate A as a function of the
concentration of A for a typical enzyme-catalyzed reaction.

investigations of the enzyme-catalyzed reaction led to observations which
were perplexing at that time. Data which were obtained in experiments at
low concentrations of substrate indicated first order kinetic behavior while
experiments at high substrate concentrations suggested zero order kinetic
behavior. That is, the reaction rate was a constant independent of substrate
concentration. A careful analysis of the various results indicated that a plot
of the rate of sucrose disappearance against sucrose concentration had the
appearance shown in Figure 1.3. Numerous hypotheses were advanced to
explain the kinetic behavior of enzyme-catalyzed processes', but none
received widespread acceptance until the proposal suggested by Brown?.
Brown’s hypothesis was influenced by observations made by others. Wirtz?
had reported that the proteolytic enzyme papain formed an insoluble
complex with the substrate fibrin. This indicated that enzymes could
combine with their substrates, but it did not provide evidence that the
resulting complex was an obligatory intermediate in the reaction sequence.
Additionally, O’Sullivan and Tompson* observed that invertase could
tolerate a higher temperature in the presence of its substrate than in the
absence of substrate. This observation was consistent with the hypothesis
that sucrose could combine with invertase to form a complex which was
more resistant to heat inactivation than was the native enzyme. Once again,
this did not mandate that the enzyme-substrate complex was an obligatory
intermediate in the reaction sequence. Finally, Emil Fischer’s® “lock and
key” explanation for enzyme specificity was best interpreted, at that time, in
terms of an enzyme-substrate complex which is an obligatory intermediate
in the reaction sequence. Thus, Brown suggested the following model
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for enzyme-catalyzed reactions.

E+A<EASE+P

In the foregoing reaction sequence, E represents the free enzyme while EA
represents the complex of enzyme with substrate A. In this model, and
throughout this text, the letters A, B, C, and D represent substrates while
the letters P, Q, R and S represent products of the enzymic reaction. The
forgoing model predicts that the reaction rate, i.e the increase of P with time
should be v = k,(EA). Thus the rate of the reaction is proportional to the
concentration of the EA complex. If the concentration of the enzyme were
held constant and assays were run at increasing concentrations of substrate
A, one would expect the concentration of the EA complex to be propor-
tional to the concentration of A at low concentrations of A. Under those
conditions, the kinetic behavior of the reaction would approximate first
order kinetics. Inspection of Figure 1.3 shows that, at low concentrations of
substrate A, the rate of the reaction is approximately a linear function of
substrate concentration. On the other hand, if the concentration of the
substrate were so high that essentially all the enzyme was present in the
form of the EA complex, the rate of the reaction would be determined by the
rate of decomposition of the EA complex to form a free enzyme and the
product. At that point, increasing the concentration of the substrate would
have no further effect on the rate of the reaction, and the reaction would
exhibit zero order kinetic behavior with respect to substrate concentration.
Inspection of Figure 1.3 shows that, at the highest concentrations of
substrate, the plot of reaction rate versus the concentration of substrate is
approximately a straight line with slope equal to zero. At intermediate
concentrations of substrate, the curve represents a transition from first
order to zero order kinetic behavior. The complete plot of reaction rate
versus substrate concentration (substrate-saturation curve) is that of a rec-
tangular hyperbola.

1.2 The basic assumptions on which derivation of an equation is based

The model which Brown proposed for enzymic reactions has withstood the
test of time, but it is strictly intuitive and lacks a mathematical foundation.
A mathematical treatment of this model was advanced first by a brilliant
French scientist, Victor Henri®. It was Henri who derived the equation
which is often attributed to Michaelis and Menten. Indeed, Michaelis and
Menten’ acknowledged that the purpose of their work was to provide



8 Derivation of a rate equation

experimental affirmation of the mathematical formulation published by
Henri. Based on the model proposed by Brown, one can write differential
equations for the change in concentrations of each of the two enzyme
species with respect to time.

d(E)

S = —kiB)A) + (K, + k;)(EA) (1.7)
d(EA
(dt )=k1(E)(A)—(k_1+k2)(EA) (1.8)

As pointed out earlier,

v= —%‘?:kz(EA) (1.9)
One might think that a mathematical expression for the rate of an enzymic
reaction could be obtained by an analytical solution of the system of
differential equations expressed in eqs. (1.7) and (1.8) and substitution of the
expression for (EA) into eq. (1.9). Unfortunately, there is no analytical
solution of egs. (1.7) and (1.8). However, Henri reasoned that within a few
milliseconds after the mixing of the enzyme with its substrate the concentra-
tions of free enzyme and enzyme-substrate complex would become time-
invariant. That is, for a given concentration of enzyme the relative amount
of free enzyme and enzyme-substrate complex would be a function of
substrate concentration, but the actual amount of each enzyme species
would remain constant after the first few milliseconds. This assumption
allows the differential equations of egs. (1.7) and (1.8) to be replaced by the
following linear algebraic equations.

—k(EYA) +(k_; + k,)(EA)=0 (1.10)
ki (E)A) —(k_, + k,)(EA)=0 (L.11)

The foregoing two equations contain two unknown quantities, namely (E)
and (EA), but it is not possible to solve the unknown quantities because the
equations are not independent; in fact for the model under consideration
they are identical. In order to derive an equation for the rate of an enzyme-
catalyzed reaction, it is necessary to make a number of assumptions. These
are,

E, =(E)+(EA) (1.12)
A, »E, (1.13)
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d(E) d(EA)
o = =0 (1.14)
(P)=0 (1.15)

In eq. (1.13), A, is the total substrate concentration. The first three of these
assumptions are essential for the derivation of the rate equation, the fourth
assumption is made at this point as a matter of convenience and in
chapter 4 the restriction imposed by eq.(1.15) will be removed. It is
imperative that the reason for and the implications and validity of the
assumptions expressed in egs. (1.12) through (1.14) be understood. The
logic behind the assumption expressed in eq. (1.12) is obvious. One could
not conduct a valid assay if the total activity of the enzyme were changing
during the assay. This assumption is often termed the enzyme conservation
expression. However, this equation is indispensable mathematically for
it provides a third equation and, therefore, a total of two independent
equations which can be solved for the two unknown quantities. The reason
for the remaining assumptions will be discussed in subsequent chapters.

1.3 The Briggs-Haldane steady state treatment of enzyme
kinetic behavior

The derivation which will be presented is neither that of Henri nor that of
Michaelis and Menten, but rather, the derivation of Briggs and Haldane®’.
The reason for following the Briggs-Haldane derivation is that it is a more
general treatment. As noted earlier, the rate of the enzyme-catalyzed
reaction for the model under consideration is v = k,(EA). The concentra-
tion of the free enzyme can be obtained from either eq. (1.10) or eq. (1.11).

_ky+ky)

(E)—W(EA) (1.16)

Equation (1.16) can be substituted into eq. (1.12) and rearranged as

kiE,(A)

EA)= 1.17
(EA) k_,+ky+ki(A) (1.17)
The rate of the reaction is obtained by multiplying eq. (1.17) by k.

»e — K1k E(A) (1.18)

k_y+k,+ki(A)
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Equation (1.18) is identified as the Briggs-Haldane equation, the Michaelis-
Menten equation and the Henri equation. Traditionally it is called the
Michaelis equation and, reluctantly, that tradition will be followed in this
book.

Equation (1.18) expresses the rate equation in terms of rate constants for
the individual reactions. Throughout this book an enzymic rate equation
expressed in terms of rate constants will be called the rate equation in the
coefficient form. While the rate equation is usually derived in this form, it is
not a useful form of the rate equation because most of the rate constants are
generally inaccessible in investigations of the steady state behavior of
enzymes. For this reason it is necessary to reformulate eq. (1.18) such that it
is expressed in terms of parameters which can be determined in steady state
studies. Throughout this book, these reformulations will be conducted in
a similar manner. Equation (1.18) can be re-written as

num. 1 (A)
U=
constant + coef. A(A)’

(1.19)

where num. 1=k k,E, constant =k_, + k,, and coef. A = k,. The equa-
tion is reformulated by dividing both the numerator and denominator of
the right hand side of eq. (1.19) by coef. A. The result is,

num, 1
coef. A

v =
constant

(A)
(1.20)
A
coera TA
The coeflicient of the numerator term in eq. (1.20) is a constant, and the first
term in the denominator of eq. (1.20) is also a constant. The equation is
reformulated as,
V nax(A)
p=——mar 7 1.21
K, +(A) (21
where V. =k,E and K, = (k_, + k,)/k;. The Michaelis constant is K,,,,
and V__ is the maximal velocity. More precisely, V_,_is the velocity of the
reaction when the enzyme is saturated with the substrate. Throughout this
book an enzymic rate equation expressed in terms of the steady state
parameters will be called a rate equation in the kinetic form. Later in this
chapter methods which provide for estimation of the steady state para-
meters, V.. and K, will be discussed. Equations (1.18) and (1.21) both
describe a rectangular hyperbola. Stated in more descriptive terms, they
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are 1:1 order rational polynomials. A rational polynomial is a ratio of
polynomials. A 1:1 order rational polynomial contains the independent
variable, (A) in this case, to the first power in both the numerator and
denominator.

It is informative to divide both the numerator and denominator of the
right hand side of eq. (1.21) by the concentration of A,

po—Vmax (1.22)

1+ Ky
(A)
If the concentration of A were much less than K,,, such that 1 « K, /(A),
eq.(1.22) would become

v =22 (A (1.23)

This equation describes a reaction which exhibits first order kinetic behav-
ior, and the apparent first order rate constant is V. /K,,. However, if the
concentration of substrate were so great that K, /(A) ~0, eq. (1.22) would
become

v~V .. (1.24)

At this point the rate of the reaction would be independent of (A) and the
reaction would exhibit zero order kinetic behavior with respect to substrate
concentration. The mathematical definition of saturation of the enzyme
with substrate A is, K, /(A) ~ 0. Finally, if K, = (A),v = 1/2(V_,,). Thus the
K,, is the concentration of the substrate which results in half maximal
velocity, and the Michaelis constant is expressed in molarity.

The derivation presented here is that of Briggs and Haldane, and it differs
from that developed by Henri and also that employed by Michaelis and
Menten. In the case of the model under consideration, k, is the rate
constant which includes the step which usually involves either the cleavage
or formation of a covalent bond. If this step were very much slower than the
other steps in the model, an equilibrium would be established between the
free enzyme and the substrate and the enzyme-substrate complex. If such
were the case, k, would be much smaller than k_; and the Michaelis
constant wouldbe K, >~ k _, /k, . Thus, in the Briggs-Haldane treatment the
Michaelis constant is a kinetic constant while in the Henri treatment it is
a dissociation constant and, therefore, a thermodynamic constant. The
matter of whether or not the reaction involving the cleavage of formation of
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a covalent bond is very much siower than other steps in the reaction
sequence will be discussed in chapter 9 of this book.

1.4 Estimation of steady state parameters

If one were to measure the velocity of an enzyme-catalyzed reaction in
a series of assays in which the substrate concentration in each assay varied
from one which was sufficiently small to result in a low rate relative to
V .., t0 one where the substrate concentration were large enough to result
in maximal velocity, one could plot the data and estimate both V_, and
K,,. However, if, for example, the solubility of the substrate were limited in
an aqueous solution, it might be impossible to estimate V__, and therefore
K,, could also not be estimated. For this reason, efforts were made to
rearrange eq.(1.18) in a linear form so that V_, could be obtained by
extrapolation. Haldane and Stern’, following the suggestions of B. Woolf,
rearranged eq. (1.21) by dividing both sides of the equation by (A) and then
inverting both sides of the equation to obtain

A 1 K

=V (A)+V"’. (1.25)

max max

Equation (1.25) describes a linear relationship if (A)/v were plotted against
(A). The slope of the line is the reciprocal of V_,_and the intercept of the
(A)/vaxisis K,,/V ... This same rearrangement was proposed by Hanes!'.
Haldane and Stern also noted that multiplying both sides of eq. (1.21) by
[K,, +(A)] and the rearrangement gives,

v=-K L+V

, 1.26
m (A) max ( )

Equation (1.26) is a linear relationship whose slope is — K,, and whose
intercept of the v axis is V.. Lineweaver and Burk'? utilized yet another
rearrangement to obtain a linear form of eq. (1.21). This was accomplished
by simply inverting both sides of eq. (1.21).

K, 1 1

m

0 Vo) Vo

(1.27)

The resulting equation is that of a straight line whose slope is K,,/V _, and
whose intercept of the 1/v axis is 1/V__. . The point of intersection of the
1/(A) axis is — 1/K,,.
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There are additional linear forms of eq. (1.21), for example, the direct
linear plot of Eisenthal and Cornish-Bowden'?, but the foregoing are the
most widely used. It is important to recognize that these equations do
not give rise to estimates of the steady state kinetic parameters with
equal degrees of precision. Note that 1/, the dependent variable in the
Lineweaver-Burk equation [eq. (1.27)] approaches infinity as 1/(A), the
independent variable, approaches infinity. Hence, the Lineweaver-Burk
plot places maximum weight on those observations which are made at low
concentrations of the substrate, and those are the values which are asso-
ciated normally with the largest experimental error. The converse is true of
eq. (1.25) while eq. (1.26) places uniform weight on observations throughout
the substrate-saturation curve. The significance is that the Lineweaver-
Burk plot is the least desirable method for obtaining quantitative estimates
of the steady state parameters. The objection to the use of the Lineweaver-
Burk plot can be alleviated to some degree by utilizing a statistical program
which employs weighting factors, but this necessitates the selection of an
appropriate weighting factor. It is important to realize that the foregoing
objection applies to the use of the Lineweaver-Burk plot as a means of
obtaining quantitative estimates of K,, and V__, only, it does not argue
against plotting data as a double reciprocal plot utilizing the estimates of
the parameters which have been obtained by a more satisfactory method.
Probably the most feasible method of obtaining quantitative estimates of
the steady state parameters is the nonlinear regression method of Wilkin-
son'. The original publication outlines the method clearly for use with
a calculator, but the procedure was outlined so well in Wilkinson’s publica-
tion that itis easy to adapt it to a computer program to be run on a personal
computer or even a programmable hand held calculator. This procedure is
so elegant that there is little reason to obtain estimates of V___and K, by
any other method provided the substrate-saturation curve is a rectangular
hyperbola and the procedure is outlined in section 1.A.3 of the appendix to
this chapter.

1.5 Problems for chapter 1

1.1 Derive expressions for the fraction of the total enzyme present as the
free enzyme and for the fraction of the total enzyme present as the EA
complex for the enzyme model considered in this chapter.

1.2 On the same sheet of graph paper, plot the (E)/E, and (EA)/E, as
a function of (A)/K,,. Vary (A)/K,, = 0.1 to 10.

1.3 The following data were obtained in a substrate-saturation experi-
ment.
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(A) v

mM pmoles/minute
0.075 0.0120
0.100 0.0152
0.150 0.0205
0.200 0.0245
0.250 0.0280

Estimate K,, and V , from a plot of 1/v versus 1/(A), and from a plot of
(A)/v versus (A), and finally from a plot of v versus v/{A).

Appendix: A brief look at statistical analysis
1.A.1 Definition of a few statistical terms

It is the purpose of this appendix to provide a brief account of the simpler statistical
analyses employed in enzyme kinetics. The first statistic is the arithmetic mean

or average. If one were to measure the change in absorbance at 340 my in a cuvette
in a given time interval after a dehydrogenase had been added to a reaction medium
containing NAD™ and the appropriate oxidizable substrate several times, one
would record a number of slightly different values. If the several values were
designated > Y, and n were the number of observations, the average change in
absorbance would be

Y=;n)E (1.A.1)

The arithmetic mean does not give any indication of the amount of scatter in
the observations. A measure of the accuracy of the mean should be related to
the deviations about the mean, but, in theory, the sum of the deviations greater
than the mean should be offset by the deviations less than the mean. Hence the
sum of the deviations should be equal to zero. For this reason, and for theoretical
reasons that will not be discussed here!*, the deviations about the mean are squared.
The variance is defined as the sum of the squares of the deviations divided by
the degrees of freedom. If there is one parameter measured, the degrees of freedom
is given by n — 1. Therefore the expression for the variance is,

Y- Y)?
variance = 52 = 2(7) (1.A2)

n—1
The squared term in the numerator can be expanded as

- = Y Y\?
Y(¥2-2YY+v3)=Yr2-2YYY -+ (Z—) n
n n
The variance can be expressed as follows:
Y 2

g " (1A3)

n—1
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The standard deviation is defined as the square root of the variance.

(LLA4)

Standard deviation and standard error are similar terms. They may be used
interchangeably if the statistic to which they apply is specified. The coefficient
of variation is defined as follows:

if%@fx1m=%x1m (LA.5)

The symbol s? is defined as the variance of a given sample while o2 is defined as
the variance of the population from which the sample is taken. The former is
estimated from the data, but the statistician is usually interested in the variance
of the population rather than that of the sample of the population. In the

same manner, the arithmetic mean of the sample is defined as Y while the arithmetic
mean of the population is u.

Cv.=

1.4.2 Linear regression

A procedure which is employed extensively in the analysis of enzyme kinetic
data, as well as in all of biochemistry, is linear regression. Linear relationships
are well understood in mathematical terms. Three linear transformations of the
Michaelis equation have been presented in this chapter. In general terms, the
assumption of a linear relationship implies that a dependent variable, Y, is a linear
function of an independent variable X. In the case of the Lineweaver-Burk plot,
1/v is the dependent variable while 1/(A) is the independent variable. In the case
of the (A)/v versus (A) plot, (A)/v is the dependent and (A) is the independent
variable. However, the linear regression, as here presented, is based on four
assumptions. These assumptions are,

1) Itis assumed that the independent variable, X, is measured without error.
2) The expected value of the dependent variable for a given value of the,
independent variable is,

Y =A 4+ BX. (1.A.6)

3) For any given value of X, the observed Y values are distributed
independently and normally. This is represented by,

Y,=A+BX +¢, (1.A.7)

where ¢; Is the error in the estimate.
4) TItis assumed that the variance around the regression line is constant and,
therefore, independent of the magnitude of X or Y.

The aim in the linear regression is to calculate the values of A and Bineq. (1.A.7)
such that Y can be estimated for any given value of X . Thus, the difference between
the observed vélues of Y; and the value estimated from the regression line would be

r=7-v, (LA8)

i i
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where r, is the residual and ¥, is the estimated value of Y,. As with variance, the
residuals are squared.

Y=Y, -Y)=Y(A+BX,—Y,)? (1.A9)

The problem is to find the values for A and B which minimize ¥ r?. This is
accomplished by setting the following derivatives equal to zero.

dY (A +BX— Y)Z_O dY(A+BX—Y):
dA o dB B

An expansion of the squared numerator and differentiation gives the following
expressions.

0

2
%=ZZA+2B2X—2ZY=O

d 2
L AYX +2BYX*—2¥XY =0

dB
The following equations arise from the foregoing
YY=nA+BYX (1.A.10)
YXY=AYX+B) X*? (LA.1D)

Equations (1.A.10) and (1.A.11) can be solved for A and B. Note that A is the
point of intersection of the regression line with the Y axis and B is the slope of
the regression line, but the latter is more often referred to as the regression
coefficient.

A variety of computer-based library programs which provide for numerical
solution of egs. (1.A.10) and (1.A.11) as well as providing estimates of the standard
error for both parameters are available. There are also books which contain the
source code for such programs'®. Nevertheless, it seems appropriate to provide
a brief account here of how such computations are conducted'. Equations (1.A.10)
and (1.A.11) can be generalized as,

ayx;+ax;=b;
a3 Xy +ay,x;=b,
These equations can be written in matrix form
b,
b2

An augmented matrix which consists of the A matrix, the B vector from the
foregoing and an identity matrix can be constructed

di; 12| %

Agz dzz||Xy

a, a;,; b, 10

A B I=

ay; G, by 0 1
After the equations have been solved, the resultant augmented matrix will be

I x A_1[=1 0 x ¢y ¢

0 1 x; ¢ ¢y

In the foregoing, the elements c;; are the elements in matrix A~ !, The inversion
of matrix A is accomplished by two types of operations. The first of these is
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normalization in which all of the elements in a row of the original augmented
matrix are divided by the first non-zero element of the row. By a repetition of
this operation, the diagonal elements of A are converted to ones. The second
operation is reduction in which the non-diagonal elements of A are converted to
zeros. Normalization of the first row of the original augmented matrix gives

aj, by 1
ap1 4y apg
a,; 4, b, 0 1

Reduction is performed by multiplying each element of the normalized first row
by a,, and subtracting the product from the corresponding element in row 2.
The result of this reduction is

a, b, 1
1 — — — 0
a4y ayy ayy
0 A11833 — 41205, _‘111bz_asz1 4 1
ary ag, a1
Normalization of the second row gives
Ayz b, 1
I — — — 0
ayy ayq ayy
0 1 a;,b; —ayb, _ az; agy
A11Q3y —Aq34y 11435 —ay205; 41,43, — A4,

The final reduction is accomplished by multiplying each element of the normalized
second row by a, ,/a, , and subtracting the product from the corresponding element
of row 1. The result is the final augmented matrix.

10 a3:b, —ay,b, ¥} _ 4
1103, — Q1201 Ay1Gy; — 454, 11832 — 44,4y,

0 1 ay by —ay b, ay ar
Q11023 —Ay54,, A11437 — 435434 11437 — 44343,

The symbols from egs. (1.A.10) and (1.A.11) can be substituted into the foregoing
matrix to give

| o ZXXY-FXFXY Y X2 B Y X
nYXT (XX S X (LXP  nyX:_ (3 XP

0 1 ny XYy -y x3'y 3 YXx n
IIZXZ—(ZX)2 nZXZ—(ZX)Z nZXZ—(ZX)2

It can be seen from the foregoing that A in eqs. (1.A.10) and (1.A.11) is equal to
the first element in the third column of resultant augmented matrix, and B is equal
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to the second element in the third column of the matrix. Thus,

_LXYY-YXYXY (FX?FY-FXFXY)/n
A ST (33)° o ¥, (LA12)

n

Y
B_nZXY—ZXZY_ZXY_ZXT

= = 1.A.1
" X7 (3X)° (3 X) (1A.13)
)
14
The variance about the regression line is estimated by
—A—-BX)? Y2-AYY-BYXY
22U i) ) by (1.A.14)

n—2 n—2

The degree of freedom in eq. (1.A.14) is n — 2 because both A and B are estimated
from the observed data. Without providing a derivation, the standard error on
the estimate of A is

X2
S.C.A=\/Sz Xn—ZX—ZZ—_(Z:—X)Z (IAIS)

It should be noted that the standard error for A is equal to the square root of

the variance times the first element of the fourth column of the augmented matrix.
In like manner, the standard error for the estimation of B, the regression coefficient,
is

2)( n
s.e.Bz\/s X (T X

The standard error of the regression coefficient is equal to the square root of the
variance times the second element of the last column in the augmented matrix.
Thus the diagonal elements in the inverse matrix A~ ! are factors used in estimation
of the standard errors. The variables which are required for estimation of A and
B and their standard errors are n, 3 Y,> Y23 X, ¥ X%, 3 X Y. The equations
presented in this text may appear to differ from those found in reference books
on statistical analysis'’, but they are equivalent. Statisticians rearrange the
equations to improve the computational efficiency. The purpose here has been

to outline the derivations in a fairly straightforward manner.

(1.A.16)

1.4.3 Non-linear regression in engyme kinetic analysis

The non-linear regression method proposed by Wilkinson for estimation of the
steady state enzyme kinetic parameters will be outlined here in essentially the
manner it has been presented in the original publication!®. Non-linear regression
requires a preliminary estimate of the parameters, and these are obtained by
linear regression similar to that described in the previous discussion. However,
Wilkinson employed a weighted linear regression of (A)/v versus (A). The following
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expressions provide for the preliminary estimates of the parameters.
o U v vt
Di=)v’) —5—->—> — (LA17

[Z Z(A) 2032(1:—)]/IDI (1.A.18)

. o* ot \2
Vmax=[Z W (ZFA)) J/IDI (1.A.19)

The non-linear aspect of the Wilkinson method is based on the assumption
that if a function is non-linear in a parameter, c, the following linear approximation
may be used.

fv,c = fv,c" + (C - Co)fv;.c'“ (IAZO)

where c° is a provisional estimate of ¢ and f is the first derivative of S with respect
to c. In terms of enzyme kinetics, eq. (1.A.20) becomes

v V2,.(A) Ve
V max max — K _ e max I.A.Zl

Vo [Km Ko % Ky (A2
To initiate the calculations, the preliminary estimates of K,, and V,,,, from linear
regression are used as the provisional estimates of the parameters. The following
calculations lead to updated estimates of the parameters.

Voex(A)
f= X+ @A) (1.A22)
N /-7
f'= K+ (A (1.A23)
D=3 23 =87 (1.A.24)
by=[Lf 2 of =LY of')/IDI (1.A.25)
by=[Lf Yo' =Y Y of VDI (1.A.26)
K,=K%+2 (1.A.27)
bi
Vinax = Ve X by (1.A.28)

The updated estimate of K,, is tested against the prov151ona1 estimate. If the two
are sufficiently close, for example if abs(K,, — K5 )/K2 <0.001, the updated
parameters are accepted as the best estimates. If on the other hand, the updated
K., does not pass the test, the provisional estimates of the parameters are replaced
by the updated estimates and the calculations embodied i Inegs. (1.A.22) through
(1.A.28) are repeated. It should be understood that, as K approaches the best
estimate, the value of b, approaches unity and b, approaches zero. After the best
estimates have been obtained, the variance can be calculated as

s=2” *b‘gff[ b (1.A29)




